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Abstract

Vibration analysis of circular arches is an important subject in mechanics due to its various applications. In particular,

circular arches with variable cross-section have been widely used to satisfy modern architectural and structural

requirements. Recently, the generalized differential quadrature method (GDQM) and differential transformation method

(DTM) were proposed by Shu and Zhou, respectively. In this study, GDQM and DTM are applied to vibration analysis of

circular arches with variable cross-section. The governing equation of motion is derived and the non-dimensional natural

frequencies are obtained for various boundary conditions. The concepts of differential transformation and generalized

differential quadrature are briefly introduced. The results obtained by these methods are compared with previously

published works. GDQM and DTM showed fast convergence, accuracy and validity in solving the vibration problem for

circular arches with variable cross-sections.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Arches are widely used as basic structural elements. As such, analysis of the vibration of an arch structure is
essential in civil engineering, architecture, marine engineering and aeronautics. In particular, the free
vibration, which is a function of the natural properties of structures, is an important subject of investigation.

Generally, much research has been conducted using the Bernoulli–Euler beam theory to analyze free
vibration of members with uniform cross-section and circular arches with varying cross-section, where the
arch’s neutral axis is inextensible [1–6].

Laura and Verniere de Irassar studied the vibration of arch structures with linearly varying cross-section
and with end mass [1]. Gutierrez and Laura carried out vibration analysis of arches with different forms of
varying cross-section using the Ritz method [2]. Auciello and Rosa analyzed and investigated the vibration of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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circular arches with varying cross-section using various numerical methods, such as the cell discretization
method (CDM), finite element method (FEM), Galerkin method, and Ritz method [3]. Tong et al. obtained an
analytical solution by discretizing the varying cross-section of a circular arch into finite elements.

Recent research using FEM, Ritz, CDM and Galerkin numerical methods involved complicated equations
that were tedious to calculate. The differential transformation method (DTM) and generalized differential
quadrature method (GDQM) have been developed as a novel approach in obtaining rapid convergence with
relatively straightforward equations.

The objective of this study is to analyze the free vibration of circular arches with varying cross-section using
DTM and GDQM.

In this study, the concepts of differential transformation and generalized differential quadrature are briefly
introduced. The governing equations of motion are derived and the vibration analysis is accomplished using
GDQM and DTM. The non-dimensional natural frequencies were obtained for various boundary conditions
and the results are compared with that of previous works using conventional methods. Results showed that
GDQM and DTM exhibited rapid convergence, accuracy and validity in solving the vibration problem of
circular arches with variable cross-section.
2. Governing equation

Fig. 1 shows a circular arch with a varying cross-section and opening angle y at an arbitrary point, where R

denotes the circular arch radius, I0 is the moment of inertia, A0 is the area at the top of arch, and wr, vr and f
represent the tangential displacement, radial displacement and rotation angle at the arbitrary point,
respectively.

Fig. 2 shows the loads acting on a circular arch element in free vibration, where M, N and T denote the
bending moment, axial force and shear force, respectively. The governing equation of motion for a circular
arch with varying cross-section with respect to small displacement w is derived, shown in Eq. (1). The shear
and axial forces acting on the small element are represented by Eqs. (2) and (3), respectively:
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Fig. 1. A circular arch with variable cross-section.
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The cross-section used in the above governing equation is considered to have constant width and variable
height. If the width and height of the cross-section at the top of arch are b and h, respectively, the area is
A0 ¼ bh and the moment of inertia is I0 ¼ bh3/12. Using the function f with respect to the opening angle y, the
variation of the cross-sectional area ĀðyÞ and the moment of inertia ĪðyÞ with respect to arbitrary y are
represented by

ĀðyÞ ¼ A0f ¼ A0

Xr

i¼0

f iy
i; ĪðyÞ ¼ I0q ¼ I0

Xp

i¼0

qiy
i, (4)

where r and p are the coefficients of the polynomial expressions for ĀðyÞ and ĪðyÞ, respectively.
Eq. (4) can be applied to an arbitrary varying cross-section, and the relationship between the arch cross-

section function f and the moment of inertia q is q ¼ f3.
If the vibration of the circular arch with varying cross-section is assumed to be harmonic, then

wðy; tÞ ¼W ðyÞeiot. (5)

Substituting Eq. (5) into Eq. (1) and eliminating eiot, the equation of motion for a circular arch with varying
cross-section becomes
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where o is the natural angular frequency (rad/s) of vibration.
The variable X ¼ y=yn is introduced to present the governing equation in non-dimensional form, where yn is

the opening angle of the arch.
Eq. (6) becomes
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where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrA0R

4=EI0Þ

q
o is the non-dimensional natural frequency.
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In this study, the boundary conditions considered are clamped–clamped and hinged–hinged.
The boundary conditions for clamped and hinged edges are as follows:

clamped : w ¼ 0; w0 ¼ 0; c ¼ 0 at X ¼ 0; 1, (8)

hinged : w ¼ 0; w0 ¼ 0; M ¼ 0 at X ¼ 0; 1. (9)

The mathematical expressions for both the rotation angle of the cross-section c and the bending
moment M are

c ¼
1

R

d2w

y2n dX 2
þ w

 !
, (10)

M ¼ �
EI0q

R2

d3w

y3n dX 3
þ

dw

ydX

 !
. (11)

3. Differential transformation method and generalized differential quadrature method

3.1. Differential transformation method

The DTM is based on the Taylor series expansion. Solution of the equations is obtained through recursive
algebra of the transformed governing equations of motion by basic mathematical operations. DTM is a very
useful method for solving linear and nonlinear problems.

Differential transformation of an arbitrary original function is defined as follows:

Y ðkÞ ¼
1

k!

dkyðxÞ

dxk

" #
x¼0

, (12)

where y(x) is the original function and Y(k) is the transformed function, which is called the T-function.
The differential inverse transformation of Y(k) is defined as

yðxÞ ¼
X1
k¼0

xkY ðkÞ. (13)

Substituting Eq. (12) into Eq. (13) and rearranging, the original function y(x) can be expressed as

yðxÞ ¼
X1
k¼0

xk

k!

dkyðxÞ

dxk

" #
x¼0

. (14)

In real applications, y(x) can be approximated using finite terms and Eq. (13) can be written as

yðxÞ ¼
Xn

k¼0

xkY ðkÞ, (15)

where n is a natural number determined by the convergence of the solution. Eq. (15) implies that yðxÞ ¼P1
k¼nþ1x

kY ðkÞ is negligibly small.
Examples of differential transformation of the original function are listed in Table 1.

3.2. Generalized differential quadrature method

The GDQM has recently been proposed as a general numerical method for solving high-order ordinary and
partial differential equations. GDQM is a generalization of the conventional differential quadrature method,
since it can be applied to any finite-order differential equation in a strict form. GDQM uses the same number
of independent variables as for the conditions at a point [12–15].
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Table 1

Examples of differential transformation of the original function

Original function T-function

wðxÞ ¼ yðxÞ � zðxÞ W ðkÞ ¼ Y ðkÞ � ZðkÞ

zðxÞ ¼ lyðxÞ ZðkÞ ¼ lY ðkÞ

wðxÞ ¼ dnyðxÞ
dxn

W ðkÞ ¼ ðk þ 1Þðk þ 2Þ � � � ðk þ nÞY ðk þ nÞ

wðxÞ ¼ yðxÞzðxÞ
W ðkÞ ¼

Pk
l¼0

Y ðlÞZðk � lÞ

wðxÞ ¼ xm

W ðkÞ ¼ dðk �mÞ ¼
1

0
for

k ¼ m

kam

(

wðxÞ ¼ sinðlxÞ W ðkÞ ¼ lk

k! sin
pk
2

� �
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According to the concept of conventional integral quadrature, the nth-order derivative with respect to x of
the function u(x, t) at the ith grid point was approximated using Eq. (16) by Bellman et al. [13]:

qn

qxn
½uxðxi; tÞ� ¼

XN

j¼1

c
ðnÞ
ij uðxj ; tÞ for i ¼ 1; 2; . . . ;N, (16)

where uxðxi; tÞ indicates the nth-order derivative of u(x, t) with respect to x at xi, N is the number of discrete
grid points, and c

ðnÞ
ij are the weighting coefficients.

Weighting coefficients with respect to the first-order derivative in the GDQM can be represented by the
following equations:

c
ð1Þ
ij ¼

Mð1ÞðxiÞ

ðxi�xj ÞM
ð1Þðxj Þ

; i; j ¼ 1; 2; . . . ;N but iaj, (17)

c
ð1Þ
ii ¼ �

XN

j¼1;jai

c
ð1Þ
ij ; i ¼ 1; 2; . . . ;N for i ¼ j, (18)

where

Mð1ÞðxiÞ ¼
XN

j¼1;jai

ðxi � xjÞ.

Weighting coefficients for second-order or higher-order derivatives can be obtained from the recurrence
relationship of the mth-order weighting coefficients c

ðmÞ
ij at uðmÞx ðxi; tÞ represented in Eqs. (19) and (20):

c
ðmÞ
ij ¼ m c

ðm�1Þ
ii c

ð1Þ
ij �

c
ðm�1Þ
ij

xi � xj

 !
for iaj; m ¼ 2; 3; . . . ;N � 1; i; j ¼ 1; 2; . . . ;N, (19)

c
ðmÞ
ii ¼ �

XN

j¼1;jai

c
ðmÞ
ij for i ¼ 1; 2; . . . ;N. (20)

As illustrated above, the equations to determine weighting coefficients for GDQM are relatively more
concise, straightforward and less cumbersome to formulate and program by recursive relationships.
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4. Numerical results and discussion

4.1. Differential transformation method

Numerical DTM analysis is based on the following matrix equation composed of the transformed
differential equations of motion and the transformed boundary condition equations:

a1;1 a1;2 � � � a1;n a1;nþ1

a2;1 a2;2 � � � a2;n a2;nþ1

..

. ..
. ..

. ..
. ..

.

anþ1;1 anþ1;2 � � � anþ1;n anþ1;nþ1

2
666664

3
777775

Uð0Þ

Uð1Þ

..

.

UðnÞ

2
666664

3
777775 ¼

0

0

..

.

0

2
66664

3
77775. (21)

For a non-trivial solution, the determinant of the coefficient matrix of the above equation must vanish, that is

a1;1 a1;2 � � � a1;n a1;nþ1

a2;1 a2;2 � � � a2;n a2;nþ1

..

. ..
. ..

. ..
. ..

.

anþ1;1 anþ1;2 � � � anþ1;n anþ1;nþ1

											

											
¼ 0. (22)

The natural frequencies of a circular arch can be obtained from Eq. (22).

4.2. Generalized differential quadrature method

Numerical GDQM analysis is represented by a matrix divided by the interior and boundary portions from
the transformed equation of motion [12]:

AIB½ � W Bf g þ AII½ � W If g ¼ l2 W If g, (23)

where [AIB] and [AII] are coefficient matrices of the boundary and interior portions of the governing equation,
respectively.

The transformed boundary condition equation is represented in the following matrix form:

ABB½ � W Bf g þ ABI½ � W If g ¼ 0, (24)

where [ABB] and [ABI] are coefficient matrices of the boundary and interior portions of the boundary condition
equations, respectively.

Substituting Eq. (24) into Eq. (23) and rearranging, the vibration analysis of an arch is represented by the
following eigenvalue problem:

AII½ � � AIB½ � ABB½ ��1 ABI½ �
� �

W If g ¼ l2 W If g. (25)

In this numerical analysis, a Chebyshev polynomial grid is used in the grid distribution, as represented by Eq. (26):

X i ¼
1

2
1� cos

pði � 1Þ

ðN � 1Þ

� �
; i ¼ 1; 2; 3; . . . ;N. (26)
4.3. Circular arches with continuously varying cross-section

4.3.1. Continuously varying cross-section

If a circular arch has a cross-section of constant width and linearly varying height, the function for the
varying cross-section can be expressed as follows:

f ðX Þ ¼ 1þ að2X � 1Þ for 0pXp1, (27)

where a is the area parameter.
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The numerical analysis of a circular arch with linearly varying cross-section is applied to three conditions:
clamped–clamped, hinged–hinged and clamped–hinged. The natural frequencies are obtained to five
significant figures and compared to those in Ref. [3].

Tables 2 and 3 show numerical results for a ¼ 0:1 for the boundary conditions clamped–clamped and
hinged–hinged. The non-dimensional natural frequencies obtained by DTM and GDQM show good
agreement, but are always greater than the non-dimensional natural frequencies calculated by the
Rayleigh–Ritz method and CDM. For this reason, Rayleigh–Ritz method and CDM always have lower
limit values [3]. However, the results of FEM and those for DTM and GDQM agree comparatively well.

Fig. 3 shows the convergence of the non-dimensional natural frequencies obtained by DTM and GDQM.
The GDQM solutions show a converging trend starting from a relatively lower grid number 13 then
simultaneously converge at 18 for the first and second non-dimensional natural frequencies.

The DTM solutions show a converging trend starting from series term 28 and are completely converged at
38. The second non-dimensional natural frequency shows a converging trend from 37 and is converged at 47.
The DTM results show that the first and second natural frequencies are sequentially obtained and that higher
natural frequencies converge with an increasing number of series terms. In contrast, for GDQM the first and
second natural frequencies are simultaneously obtained.

4.3.2. Varying cross-section with quadratic function

If the width of a circular arch’s cross-section is constant and its height is a quadratic variable with respect to
X, the function of the varying cross-section is represented as follows:

f ðX Þ ¼ 1þ að2X � 1Þð Þ
2 for 0pXp1. (28)

Tables 4 and 5 show the non-dimensional natural frequencies of a quadratically varying cross-section for
a ¼ 0:1 for the boundary conditions clamped–clamped and hinged–hinged. The results for the first and second
non-dimensional natural frequencies by DTM and GDQM show good agreement.
Table 2

Non-dimensional fundamental frequencies of clamped-clamped circular arches with continuously varying cross-section: ¼ 1þ að2X � 1Þ

yn (deg) Method

Rayleigh–Ritz (3) FEM (3) CDM (3) DTM GDQM

a ¼ 0.1

10 1999.9 2000.5 2017.0 2017.0

20 498.33 502.52 499.44 502.30 502.30

30 220.06 220.56 221.82 221.82

40 122.70 123.65 122.97 123.67 123.67

50 77.632 77.813 78.258 78.258

60 53.172 53.674 53.303 53.607 53.607

Table 3

Non-dimensional fundamental frequencies of hinged–hinged circular arches with continuously varying cross-section: f ðX Þ ¼ 1þ að2X � 1Þ

yn (deg) Method

Rayleigh–Ritz (3) FEM (3) CDM (3) DTM GDQM

a ¼ 0.1

10 1286.5 1287.8 1290.5 1290.5

20 319.09 320.81 320.11 320.76 320.76

30 141.05 140.92 141.20 141.20

40 78.069 78.438 78.220 78.373 78.373

50 49.124 49.218 49.312 49.312

60 33.430 33.621 33.484 33.546 33.546
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Fig. 3. Convergence of non-dimensional natural frequencies of a clamped–clamped circular arch with continuously varying cross-section:

(y ¼ 601 and f ðX Þ ¼ 1þ 0:1ð2X � 1Þ): (a) GDQ solution and (b) DT solution.

Table 4

Non-dimensional natural frequencies of clamped–clamped circular arches with continuously varying cross-section

yn (deg) Method

DTM GDQM

Mode 1 Mode 2 Mode 1 Mode 2

a ¼ 0.1

10 2012.2 3622.0 2012.2 3622.0

20 501.12 904.18 501.12 904.18

30 221.30 400.88 221.30 400.88

40 123.39 224.73 123.39 224.73

50 78.082 143.20 78.082 143.20

60 53.491 98.920 53.491 98.920
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Table 5

Non-dimensional natural frequencies of hinged–hinged circular arches with continuously varying cross-section

yn (deg) Method

DTM GDQM

Mode 1 Mode 2 Mode 1 Mode 2

a ¼ 0.1

10 1285.1 2750.4 1285.1 2750.4

20 319.43 686.25 319.43 686.25

30 140.61 304.00 140.61 304.00

40 78.046 170.22 78.046 170.22

50 49.106 108.30 49.106 108.30

60 33.405 74.671 33.405 74.671
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Fig. 4. Convergence of non-dimensional natural frequencies of a clamped–clamped circular arch with continuously varying cross-section

(y ¼ 601 and f ðX Þ ¼ ð1þ 0:1ð2X � 1ÞÞ2): (a) GDQM solution and (b) DT solution.
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Fig. 4 show the convergence of the non-dimensional natural frequencies calculated using both DTM and
GDQM. The numerical GDQM results indicate that the first and second non-dimensional natural frequencies
show a converging trend from grid number 10 and are converged at grid number 18. The first non-dimensional
natural frequency by DTM shows a converging trend from series term 30 and is completely converged
at 38. The second non-dimensional natural frequency shows a converging trend from series term 40 and is
converged at 52.

The results in Figs. 3 and 4 show that DTM is influenced by the coefficient of the cross-section function.
Also the convergence number of the non-dimensional natural frequency increases with increasing function
coefficient. In contrast, the coefficient of the GDQM cross-section function does not influence the
convergence. The first and second non-dimensional natural frequencies of GDQM simultaneously converge at
a specific grid number.

4.3.3. Varying cross-section with sine function

If the width is constant and the height varies as a sine function for the cross-section of a circular arch, the
function of the varying cross-section is represented by the following equation:

f ðX Þ ¼ 1� a sinðpX � 1Þð Þ. (29)

Tables 6 and 7 show the non-dimensional natural frequencies for a circular arch of varying cross-section
represented by the sine function, for clamped–clamped and hinged–hinged boundary conditions in the case
of a ¼ 0.1.
Table 6

Non-dimensional natural frequencies of clamped–clamped circular arches with continuously varying cross-section: f ðX Þ ¼

1� a sinðpX � 1Þð Þ

yn (deg) Method

DTM GDQM

Mode 1 Mode 2 Mode 1 Mode 2

a ¼ 0.1

10 2127.1 3816.5 2127.1 3816.5

20 529.82 952.76 529.82 952.76

30 234.04 422.45 234.04 422.45

40 130.53 236.84 130.53 236.84

50 82.635 150.94 82.635 150.94

60 56.638 104.28 56.638 104.28

Table 7

Non-dimensional natural frequencies of hinged–hinged circular arches with continuously varying cross-section: f ðX Þ ¼ 1� a sinðpX � 1Þð Þ

yn (deg) Method

DTM GDQM

Mode 1 Mode 2 Mode 1 Mode 2

a ¼ 0.1

10 1333.8 2874.8 1333.8 2874.8

20 331.58 717.30 331.58 717.30

30 145.99 317.77 145.99 317.77

40 81.050 177.94 81.050 177.94

50 51.012 113.22 51.012 113.22

60 34.715 78.067 34.715 78.067
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The natural frequency results for cross-sections with a sine function are greater than those for constant
cross-sections. In addition, the results of DTM and GDQM exhibit similar trends and are in good agreement.

5. Conclusions

In this paper, the vibration of a circular arch with variable cross-section and various boundary conditions
was analyzed using DTM and GDQM. The results were compared with those obtained using conventional
methods (FEM, Ritz method, CDM) in order to validate and verify the numerical analysis employed.

From these, the following conclusions can be stated:
1.
 The results obtained using DTM and GDQM showed good agreement.

2.
 Using DTM, accurate and efficient results were obtained as the series term increased.

3.
 GDQM obtained accurate results in spite of using a relatively lower grid number of 20.

4.
 In the convergence of non-dimensional natural frequency, DTM showed sensitivity to the coefficient of the

varying cross-section function while GDQM did not.

5.
 DTM and GDQM showed rapid convergence, accuracy and validity in solving the vibration problem for

circular arches with variable cross-section.
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